Java定时器_Timer
1. Timer和TimerTask
-
Timer是jdk中提供的一个定时器工具,使用的时候会在主线程之外起一个单独的线程执行指定的计划任务,可以指定执行一次或者反复执行多次。
-
TimerTask是一个实现了Runnable接口的抽象类,代表一个可以被Timer执行的任务。
2. 一个Timer调度的例子
实现Task
package com.usoft.timer;import java.util.TimerTask;public class Task extends TimerTask { public void run() { System.out.println("定时任务执行,taskId=" + this.hashCode()); }}
测试Timer
package com.usoft.timer;import java.util.Calendar;import java.util.Timer;public class TimeTaskTest { public static void main(String[] args) throws InterruptedException { Timer timer = new Timer(); timer.schedule(new Task(), 10 * 1000); //10 秒延迟执行 timer.schedule(new Task(), 60 * 1000, 10 * 1000);//60 秒延迟执行,每隔十秒执行一次 Calendar c = Calendar.getInstance(); c.add(Calendar.MILLISECOND, 1000 * 60); timer.schedule(new Task(), c.getTime()); //当前时间的60秒后执行 timer.schedule(new Task(), c.getTime(), 10 * 1000); timer.scheduleAtFixedRate(new Task(), c.getTime(), 10 * 1000); timer.scheduleAtFixedRate(new Task(), 60 * 1000, 10 * 1000); Thread.sleep(1000 * 120); timer.cancel();//定时器停止运行 }}
3. 如何终止Timer线程
默认情况下,创建的timer线程会一直执行,主要有下面四种方式来终止timer线程:
-
调用timer的cancle方法
-
把timer线程设置成daemon线程,(new Timer(true)创建daemon线程),在jvm里,如果所有用户线程结束,那么守护线程也会被终止,不过这种方法一般不用。
-
当所有任务执行结束后,删除对应timer对象的引用,线程也会被终止。
-
调用System.exit方法终止程序
4. 关于cancle方式终止线程
这种方式终止timer线程,jdk的实现比较巧妙,稍微说一下。
首先看cancle方法的源码:
public void cancel() { synchronized(queue) { thread.newTasksMayBeScheduled = false; queue.clear(); queue.notify(); // In case queue was already empty. }}
没有显式的线程stop方法,而是调用了queue的clear方法和queue的notify方法,clear是个自定义方法,notify是Objec自带的方法,很明显是去唤醒wait方法的。
再看clear方法:
void clear() { // Null out task references to prevent memory leak for (int i=1; i<=size; i++) queue[i] = null; size = 0;}
clear方法很简单,就是去清空queue,queue是一个TimerTask的数组,然后把queue的size重置成0,变成empty.还是没有看到显式的停止线程方法,回到最开始new Timer的时候,看看new Timer代码:
public Timer() { this("Timer-" + serialNumber());}public Timer(String name) { thread.setName(name); thread.start();}
看看这个内部变量thread:
/** * The timer thread. */private final TimerThread thread = new TimerThread(queue);
不是原生的Thread,是自定义的类TimerThread.这个类实现了Thread类,重写了run方法,如下:
public void run() { try { mainLoop(); } finally { // Someone killed this Thread, behave as if Timer cancelled synchronized(queue) { newTasksMayBeScheduled = false; queue.clear(); // Eliminate obsolete references } }}
最后是这个mainLoop方法,这方法比较长,
/** * The main timer loop. (See class comment.) */private void mainLoop() { while (true) { try { TimerTask task; boolean taskFired; synchronized(queue) { // Wait for queue to become non-empty while (queue.isEmpty() && newTasksMayBeScheduled) queue.wait(); if (queue.isEmpty()) break; // Queue is empty and will forever remain; die // Queue nonempty; look at first evt and do the right thing long currentTime, executionTime; task = queue.getMin(); synchronized(task.lock) { if (task.state == TimerTask.CANCELLED) { queue.removeMin(); continue; // No action required, poll queue again } currentTime = System.currentTimeMillis(); executionTime = task.nextExecutionTime; if (taskFired = (executionTime<=currentTime)) { if (task.period == 0) { // Non-repeating, remove queue.removeMin(); task.state = TimerTask.EXECUTED; } else { // Repeating task, reschedule queue.rescheduleMin( task.period<0 ? currentTime - task.period : executionTime + task.period); } } } if (!taskFired) // Task hasn't yet fired; wait queue.wait(executionTime - currentTime); } if (taskFired) // Task fired; run it, holding no locks task.run(); } catch(InterruptedException e) { } }}
可以看到wait方法,之前的notify就是通知到这个wait,然后clear方法在notify之前做了清空数组的操作,所以会break,线程执行结束,退出。
5. 反复执行一个任务
通过调用三个参数的schedule方法实现,最后一个参数是执行间隔,单位毫秒。
6. schedule VS. scheduleAtFixedRate
/** * Schedules the specified task for execution after the specified delay. * * @param task task to be scheduled. * @param delay delay in milliseconds before task is to be executed. */public void schedule(TimerTask task, long delay) { if (delay < 0) throw new IllegalArgumentException("Negative delay."); sched(task, System.currentTimeMillis()+delay, 0);}/** * Schedules the specified task for execution at the specified time. If * the time is in the past, the task is scheduled for immediate execution. * * @param task task to be scheduled. * @param time time at which task is to be executed. */public void schedule(TimerTask task, Date time) { sched(task, time.getTime(), 0);}/** * Schedules the specified task for repeated fixed-delay execution, * beginning after the specified delay. Subsequent executions take place * at approximately regular intervals separated by the specified period. * *In fixed-delay execution, each execution is scheduled relative to * the actual execution time of the previous execution. If an execution * is delayed for any reason (such as garbage collection or other * background activity), subsequent executions will be delayed as well. * In the long run, the frequency of execution will generally be slightly * lower than the reciprocal of the specified period (assuming the system * clock underlying Object.wait(long) is accurate). * *
Fixed-delay execution is appropriate for recurring activities * that require "smoothness." In other words, it is appropriate for * activities where it is more important to keep the frequency accurate * in the short run than in the long run. This includes most animation * tasks, such as blinking a cursor at regular intervals. It also includes * tasks wherein regular activity is performed in response to human * input, such as automatically repeating a character as long as a key * is held down. * * @param task task to be scheduled. * @param delay delay in milliseconds before task is to be executed. * @param period time in milliseconds between successive task executions. */public void schedule(TimerTask task, long delay, long period) { if (delay < 0) throw new IllegalArgumentException("Negative delay."); if (period <= 0) throw new IllegalArgumentException("Non-positive period."); sched(task, System.currentTimeMillis()+delay, -period);}/** * Schedules the specified task for repeated fixed-delay execution, * beginning at the specified time. Subsequent executions take place at * approximately regular intervals, separated by the specified period. * *
In fixed-delay execution, each execution is scheduled relative to * the actual execution time of the previous execution. If an execution * is delayed for any reason (such as garbage collection or other * background activity), subsequent executions will be delayed as well. * In the long run, the frequency of execution will generally be slightly * lower than the reciprocal of the specified period (assuming the system * clock underlying Object.wait(long) is accurate). As a * consequence of the above, if the scheduled first time is in the past, * it is scheduled for immediate execution. * *
Fixed-delay execution is appropriate for recurring activities * that require "smoothness." In other words, it is appropriate for * activities where it is more important to keep the frequency accurate * in the short run than in the long run. This includes most animation * tasks, such as blinking a cursor at regular intervals. It also includes * tasks wherein regular activity is performed in response to human * input, such as automatically repeating a character as long as a key * is held down. * * @param task task to be scheduled. * @param firstTime First time at which task is to be executed. * @param period time in milliseconds between successive task executions. */public void schedule(TimerTask task, Date firstTime, long period) { if (period <= 0) throw new IllegalArgumentException("Non-positive period."); sched(task, firstTime.getTime(), -period);}/** * Schedules the specified task for repeated fixed-rate execution, * beginning after the specified delay. Subsequent executions take place * at approximately regular intervals, separated by the specified period. * *
In fixed-rate execution, each execution is scheduled relative to the * scheduled execution time of the initial execution. If an execution is * delayed for any reason (such as garbage collection or other background * activity), two or more executions will occur in rapid succession to * "catch up." In the long run, the frequency of execution will be * exactly the reciprocal of the specified period (assuming the system * clock underlying Object.wait(long) is accurate). * *
Fixed-rate execution is appropriate for recurring activities that * are sensitive to absolute time, such as ringing a chime every * hour on the hour, or running scheduled maintenance every day at a * particular time. It is also appropriate for recurring activities * where the total time to perform a fixed number of executions is * important, such as a countdown timer that ticks once every second for * ten seconds. Finally, fixed-rate execution is appropriate for * scheduling multiple repeating timer tasks that must remain synchronized * with respect to one another. * * @param task task to be scheduled. * @param delay delay in milliseconds before task is to be executed. * @param period time in milliseconds between successive task executions. * @throws IllegalArgumentException if {@code delay < 0}, or * {@code delay + System.currentTimeMillis() < 0}, or * {@code period <= 0} * @throws IllegalStateException if task was already scheduled or * cancelled, timer was cancelled, or timer thread terminated. * @throws NullPointerException if {@code task} is null */public void scheduleAtFixedRate(TimerTask task, long delay, long period) { if (delay < 0) throw new IllegalArgumentException("Negative delay."); if (period <= 0) throw new IllegalArgumentException("Non-positive period."); sched(task, System.currentTimeMillis()+delay, period);}/** * Schedules the specified task for repeated fixed-rate execution, * beginning at the specified time. Subsequent executions take place at * approximately regular intervals, separated by the specified period. * *
In fixed-rate execution, each execution is scheduled relative to the * scheduled execution time of the initial execution. If an execution is * delayed for any reason (such as garbage collection or other background * activity), two or more executions will occur in rapid succession to * "catch up." In the long run, the frequency of execution will be * exactly the reciprocal of the specified period (assuming the system * clock underlying Object.wait(long) is accurate). As a * consequence of the above, if the scheduled first time is in the past, * then any "missed" executions will be scheduled for immediate "catch up" * execution. * *
Fixed-rate execution is appropriate for recurring activities that * are sensitive to absolute time, such as ringing a chime every * hour on the hour, or running scheduled maintenance every day at a * particular time. It is also appropriate for recurring activities * where the total time to perform a fixed number of executions is * important, such as a countdown timer that ticks once every second for * ten seconds. Finally, fixed-rate execution is appropriate for * scheduling multiple repeating timer tasks that must remain synchronized * with respect to one another. * * @param task task to be scheduled. * @param firstTime First time at which task is to be executed. * @param period time in milliseconds between successive task executions. */public void scheduleAtFixedRate(TimerTask task, Date firstTime, long period) { if (period <= 0) throw new IllegalArgumentException("Non-positive period."); sched(task, firstTime.getTime(), period);}
这两个方法都是任务调度方法,他们之间区别是,schedule会保证任务的间隔是按照定义的period参数严格执行的,如果某一次调度时间比较长,那么后面的时间会顺延,保证调度间隔都是period,而scheduleAtFixedRate是严格按照调度时间来的,如果某次调度时间太长了,那么会通过缩短间隔的方式保证下一次调度在预定时间执行。举个例子:每隔3秒调度一次,那么正常就是0,3,6,9s这样的时间,如果第二次调度花了2s的时间,如果是schedule,就会变成0,3+2,8,11这样的时间,保证间隔,而scheduleAtFixedRate就会变成0,3+2,6,9,压缩间隔,保证调度时间。
7. 一些注意点
每一个Timer仅对应唯一一个线程。Timer不保证任务执行的十分精确。Timer类的线程安全的。
============END============